

LAHORE COLLEGE FOR WOMEN UNIVERSITY

Jail Road, Lahore - Pakistan. Tel: 042-9203072,9203089, 9201950 Fax: 042-9203077

DEPARTMENT OF ELECTRICAL ENGINEERING Course Descriptive File

1	Course Title	Digital Image Processing					
2	Course Code	EE 432					
3	Credit Hours	Theory = $3 + Practical = 1$					
4	Pre-requisites	Programming Fundamentals, Signals & Systems,					
		Digital Signal Processing					
5	Co-requisites	None					
6	Semester	VII					
7	Resource Person	Dr. Engr. Aqsa Shabbir/Engr. Ayesha Tariq					
8	Contact Hours (Theory)	3hrs/week + 1hr tutorial					
9	Contact Hours (Lab)	3hrs/week					
10	Office Hours	Friday: 10:00 to 12:00					
		Monday: 11:00 to 1:00					
11	Email	aqsa_shabbir@outlook.com					
12	Course Outline as per Scheme of Stud	lies (SoS)					
• 0	Concept of digital image						
• T	Types of images						
• V	Visual perception						
• L	Light & electromagnetic perception						
• Image sensing & acquisition							
Spatial and luminance resolution parameters							
Image sampling and quantization							
Imaging defects, noise, histogram processing							
• Spatial filtering, convolution & correlation							
	-r						

- Smoothing & sharpening
- Fourier Transform, Discrete Fourier Transform
- Frequency based filtering
- Contrast enhancement & adjustment
- Noise elimination: smoothing, Histogram equalization, compression & Stretching
- Image Restoration & Reconstruction
- Image segmentation, Segmentation, Feature extraction
- Image Coding & Compression
- Applications

13	Course Objectives as per SoS	
	· · · · · · · · · · · · · · · · · · ·	

• To study the image fundamentals and mathematical transforms necessary for image processing.

- To study the image enhancement techniques
- To study image restoration procedures.

14 Books

Textbooks:

- 1. R. C. Gonzales, R. E. Woods, "Digital Image Processing", 4th Edition, Pearson, 2018.
- 2. R. C. Gonzales, R. E. Woods, S. L. Eddins, "Digital Image Processing using MATLAB", 2nd Edition, Gatesmark Publishing, 2009

Reference book:

1. William K. Pratt, "Introduction to Digital Image Processing", CRC Press, 2013

Journals and Conference Proceedings:

- 1. IEEE Transactions on Image Processing (TIP)
- 2. IEEE International Conference on Image Processing (ICIP)
- 3. IEEE Computer Vision and Pattern Recognition (CVPR)

15 Course Learning Outcomes (CLOs)

- 1. Acquire the basic knowledge of Digital Image Processing. Understand the concepts of digital image analysis and acquisition.
- 2. Analyze and evaluate the digital image acquisition, perception and processing in order to use them in computer vision, image enhancement and compression.

16 Marks Breakup

Theory

Quizzes/Assignments/Projects	20%
Midterm exam	25%
Terminal exam (3 hours)	30%
Total	75%

Lab = 25%

Final marks	Theory marks * 0.75 + Lab marks * 0.25
-------------	--

17						
Wee k	Торіс	CLO	Taxon omy Level	Specific Outcome	Conta ct Hours	Assessme nt
1	Introduction and origins of digital image processing. Introduction of fields that use digital image processing (x-ray imaging, gamma ray imaging, industrial imaging etc.). Fundamental steps in digital image processing.	CLO 1	C1	To introduce the students to the origins of digital image processing, its wide spectrum of applications and its pervasiveness.	3 Hours	Assessme
2	Image formation in human eye. Brightness adaptation and discrimination. Light and the electromagnetic spectrum	CLO 1		To provide a basic understanding of how digital images are acquired, represented, manipulated and	3 Hours	nt 1, Mid- Term Exam
3	Image sensing and acquisition. Image sampling and quantization. Representation of digital images. Spatial and intensity resolution.	CLO 1		processed. This serves as a solid platform on which the remaining course is built.	3 Hours	
4	Image interpolation. Basic relationships between pixels: neighbours of a pixel, adjacency, connectivity, regions and boundaries. Distance measures.	CLO 1			3 Hours	Mid-Term Exam
5	Basics of intensity transformation and spatial filtering. Image negatives, log transformations, gamma transformations, piece- wise linear transformations.	CLO 1		To study and analyze the basics of image processing in the image plane (spatial domain), in particular intensity transformations	3 Hours	LAIII

6	Histogram processing: histogram equalization, histogram matching. Contrast stretching.	CLO 1, CLO 2		for the purpose of image enhancement.	3 Hours	
7	Mechanics ofspatialfiltering.Spatialcorrelationandconvolution.Spatialfilter masks.	CLO 1, CLO 2			3 Hours	Assessme nt 3
8	Mid-Term Exam	CLO 1	C2, C4		2 Hours	
9	Smoothing spatial filters: linear and non- linear filters.	CLO 2		To study, analyze and design spatial domain filters for image	3 Hours	Assessme nt 3,
10	Sharpening spatial filters. Foundations, Laplacian, unsharp masking and high boost filtering.	CLO 2		enhancement and restoration	3 Hours	Final- Term Exam
11	Sampling and Fourier transform of sampled functions. Sampling theorem, aliasing, signal recovery from sampled data. Discrete Fourier transform.	CLO 1, CLO 2		Tostudythebasicsof2-Dsignalprocessinginfrequencydomainanditsextensiontoanalysisand	3 Hours	
12	Linear shift invariant systems. 2D impulse and its sifting property. 2D discrete Fourier transform and its inverse. Properties of 2D discrete Fourier transform.	CLO 2		design of frequency domain filters for image enhancement and restoration.	3 Hours	Assessme nt 3, Final- Term Exam
13	Image smoothing and sharpening using frequency domain filters. Ideal high pass and low pass filters. Butterworth and Gaussian filters.	2			3 Hours	
14	Image segmentation fundamentals. Point, line and edge detection. Thresholding	CLO 1, CLO 2		To introduce the students to advance topics in digital image processing and	3 Hours	Assessme nt 2, Final- Term Exam

	foundations. Region- based segmentation.			their utility designing implementing systems.	in and		
15	Image compression fundamentals. Coding redundancy, spatial and temporal redundancy, fidelity criteria. Some basic compression methods: Huffman coding, LZW coding, arithmetic coding.	CLO		-		3 Hours	
16	Final-Term Exam	CLO 1, CLO 2	C2, C4			3 Hours	

18	Course I Plan	Learning Outcomes (CLOs) and Assess	ment
	CLO		
Activity		CL01	
Assessme	ent 1	C2	
MID TER	RM EXAM	C2, C4	
Assessme	ent 2		
Assessme	ent 3		
FINAL-T EXAM	ERM		